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Abstract

This paper describes a graphical method for classifying reservoir models of the above type\ and for clarifying the
connection between permeability "and permeability gradients# and saturation[ The theory behind the method is reviewed\
and then the technique is applied to the example of a bottom!heated geothermal heatpipe\ which is shown to have a
maximum length\ beyond which the only possible stable continuation "downwards# is into single!phase vapour[ A
permeability increase "downwards# always acts to induce a liquid saturation increase[ A similar conclusion holds for
non!zero net mass ~ow but with no conduction[ Our theoretical results agree with those obtained by numerical
simulation[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The role played by permeability in single!phase porous
media ~ow is well understood\ at least in principle[ In
steady!state ~ow\ for example\ it follows from Darcy|s
law that low permeabilities should give rise to high
pressure gradients and large pressure changes[ However\
the corresponding situation for two!phase "steam:water#
porous media ~ow is more complicated[ The absolute
permeability in Darcy|s law is now multiplied by a func!
tion of saturation "the relative permeability#\ which
implies that saturation as well as pressure gradient will
be strongly in~uenced by the permeability distribution[

Previous work[ Low permeability barriers "e[g[ caprock
formations# have been associated with the formation of
vapour!dominated geothermal reservoirs[ Schubert and
Straus ð0Ł examined the gravitational stability of water
over steam and concluded that this was only possible for
low permeabilities "k ³ 3×09−06 m1#[ Since most vapour!
dominated systems have reservoir permeabilities at least
two orders of magnitude greater than this they concluded
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"Straus and Schubert ð1Ł# that a permeability contrast
was required for the development of such a system in the
natural state[ The phase boundary between the single!
phase groundwater zone and the two!phase vapour!
dominated reservoir would then occur in the low per!
meability caprock ^ below this there would be a rapid
transition to high permeability reservoir conditions "still
vapour!dominated#[

The work of Schubert and Straus was based on a
consideration of the one!dimensional steady!state\ and
the integration of the steady!state equations[ Ingebritsen
and Sorey ð2Ł carried out two!dimensional numerical
simulations of a reservoir bounded by a low permeability
{aureole| "consisting of a caprock\ and low permeability
lateral boundaries#[ They found in their examples that
vapour!dominated conditions evolved in the reservoir
provided the caprock permeability was su.ciently small
"k ³ 09−05 m1# and reservoir permeability was su.ciently
large "k × 09−04 m1#[

Stubos et al[ ð3Ł have made a theoretical investigation
of the e}ects of permeability heterogeneity[ Their work
involves explicit consideration of capillary e}ects\ but
neglects conduction[ The results are given for a one!
dimensional steady!state heatpipe[ Stubos et al[ _nd that
if the heatpipe is liquid!dominated\ then a positive per!
meability discontinuity "k increasing downward# acts to
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decrease the liquid saturation[ This would seem to sup!
port Schubert and Straus| hypothesis that vapour!domi!
nated conditions could be associated with a permeability
increase[ However Stubos et al[ also state that if the
permeability variation is su.ciently weak then precisely
the opposite happens\ that is\ a positive permeability
gradient "k increasing downward# acts to increase "rather
than decrease# the liquid saturation[

Method and aims of this paper[ The studies just men!
tioned all give partial results\ based either on a numerical
analysis of particular cases "Ingebritsen and Sorey#\ or
on a restricted set of physical parameters "Stubos et al[#[
In this paper we shall remove some of these restrictions\
and examine the interrelation of permeability\ saturation
and pressure in a wider context[ Nevertheless we will still
require that the ~ows ful_l certain conditions\ discussed
in detail below[ The main restriction is that the ~ows are
required to be one!dimensional and steady!state\ which
has as a consequence that the mass and energy ~uxes
"JM\ JE# are spatially constant[ The complete set of one!
dimensional steady!state geothermal ~ows can then be
characterized as trajectories in a six!dimensional space
whose degrees of freedom are mass ~ux "JM#\ energy ~ux
"JE#\ permeability "k#\ thermal conductivity "K#\ pressure
"P#\ and temperature "T# or liquid saturation "S# in the
single!phase and two!phase regions\ respectively[ The
geometry of this space is rather complicated[ However it
is neither necessary nor appropriate at this stage to go
into the mathematical details "which are\ however\ purely
algebraic*no di}erential equations need be solved#[ It
turns out that all the important features of the two!
phase part of the parameter space can be represented
graphically in terms of certain two!dimensional diagrams
labelled by a given "JM\ JE\ K#\ in which only permeability
"k#\ pressure "P#\ and saturation "S# vary[ The method is
thus especially relevant to the study of the natural state
of actual geothermal _elds which can be modelled
"approximately# as one!dimensional steady!state ~ows
with known JM\ JE and K[

In this paper we use special coordinates "w\ s# de_ned
in terms of the _ve _eld parameters "JM\ JE\ k\ K\ P# to
parametrize the two!dimensional subspace\ referred to
here as the ~owplane "see ð4Ł#[ Pressure trajectories and
contours are represented by one!parameter families of
curves in the ~owplane\ and the saturation associated
with each ~owpoint is determined by a simple geometrical
construction[

The systematic use of the ~owplane diagram permits a
complete classi_cation of all possible one!dimensional
steady!state geothermal ~ows[ Qualitatively di}erent
phenomena are observed when the mass and energy ~ows
exceed a well!de_ned watershed\ likewise when the per!
meability is varied through certain critical values[ Given
the permeability pro_le\ the ~owplane diagram permits
the construction of the state trajectory\ which represents
the state of the reservoir at any depth\ in particular

whether it is single!phase:two!phase\ liquid!domi!
nated:vapour!dominated\ etc[ The terminal state of the
reservoir at depth may also be predicted[

In Part 0 of this paper we describe the methodology\
and also consider in detail some special cases ] "a# the
case of zero net mass ~ux ^ and "b# the case of no conduc!
tion[ Our treatment of these examples is compared with
the results obtained by other authors including those
cited above[

The main reason for the analysis of these special cases
is\ however\ as a preparation for Part 1 of this paper
where the general situation is considered\ without restric!
tions on conduction and mass ~ow[ We shall show that
each of these e}ects has its own special geometrical sig!
nature in the ~owplane which we identify separately in
Part 0 ] however\ taken together\ they possess an impor!
tant additional feature which we will discuss in Part 1[

Model assumptions[ We con_ne our attention to porous
media models which satisfy the following criteria ]

"0# Models are restricted to be one!dimensional and
steady!state[ In the geothermal context the natural state
is often assumed to be one of steady ~ow\ or close to it[
The assumption that the ~ow is one!dimensional "ver!
tical# is legitimate for laboratory experiments\ but is more
problematic for geothermal reservoirs\ where the central
up~ow is usually surrounded by steady!state convection
cells[ Nevertheless it is common practice to begin with
a one!dimensional numerical model of an unexploited
reservoir\ the justi_cation being that it has fewer
unknown parameters\ is more easily integrated\ etc[ Also
if the one!dimensional model can be regarded as an
approximation to a three!dimensional model\ or as rep!
resenting the central up~ow of the latter\ then it can help
with the interpretation of the larger model[ We believe
that the phenomena which are characteristic of one!
dimensional ~ow must also be present in some sense in a
multidimensional model[ Other phenomena may appear
with increasing dimensionality\ but it is important to have
a good understanding of the basic "one!dimensional# case
so that these multidimensional e}ects can be reliably
identi_ed[

"1# It is assumed that a two!phase zone exists some!
where at depth[ Attention is restricted to boundary con!
ditions which are physically realistic for geothermal res!
ervoirs in the natural state[ By this is meant that the
model must be extendible upwards to the surface where
a 0 bar pressure boundary condition\ and a suitable tem!
perature boundary condition\ are applied[ Mass and
energy ~ows which originate with the geothermal source
at depth are spatially constant\ as follows from Assump!
tion 0[ We refer to these as BH!BC ] bottom!heated
boundary conditions[ Under these conditions it can be
shown that the saturation wave!speed ð4Ł in the two!
phase region is negative "points vertically upward#[ Fur!
thermore\ we may require an acceptable model to be
extendible downward until single!phase or super!critical
conditions are encountered[
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"2# The relative permeability factors ka for liquid
"a � w# and vapour "a � s# are taken to be monotonic
increasing "resp[ decreasing# functions of liquid satu!
ration\ and there are residual saturations Srw "Srs# for
which the liquid "resp[ vapour# phase is immobile[ In this
paper we make the simplifying assumption ð5\ 1\ 6Ł that
the relative permeabilities add to unity

kw¦ks � 0[ "0#

This restriction is not universally accepted[ In particular
Piquemal ð7ð has shown experimentally that for uncon!
solidated porous media kw¦ks ð 0[ However we believe
that the methods outlined in this paper will continue to
be applicable in the more general case when "0# is relaxed[
McGuinness ð8Ł has noted the general insensitivity of the
solution trajectories in the temperatureÐsaturation phase
plane to the choice of the relative permeability functions ]

"3# Capillarity is not explicitly included in our for!
mulation[ Nevertheless the macroscopic e}ects of capil!
larity which have been noted by other authors ð09Ł are
actually implicit in the ~owplane diagram "Fig[ 0# on
which our analysis is based[ Young ð4Ł has shown that
the e}ects of a short range di}usive mechanism such as
capillarity can be represented in the ~owplane in terms
of rules governing the sign of the saturation wavespeed
"relative to the boundary conditions# and the types of
phase transition which may occur[ In particular the selec!
tion rules ð3Ł which govern the choice of the correct
saturation branch for the BH!BC described above are
fully!accounted for in the ~owplane diagram[

In addition\ in this paper we limit the variations of
absolute permeability and conductivity as follows ] "0#
As regards permeability we shall concentrate on per!
meability discontinuities\ which are idealizations of rapid
permeability contrasts[ In a more general formulation
permeability would be allowed to vary arbitrarily with
depth[ "1# Conductivity is taken to be constant with
depth\ which is probably a reasonable approximation
provided there are no low!conductivity "insulating# layers
within the medium[

Stability[ The selection rules referred to above can also
be related to the stability of the steady!state system[ If
the {wrong| saturation branch is selected "relative to the
imposed boundary conditions# then it remains a legit!
imate solution of the geothermal steady!state equations[
However it cannot be obtained as the long time limit of
a solution to the dynamic equations\ and hence is not a
steady!state solution in that sense[ If this pseudo steady!
state is taken as the initial state for a time!dependent
geothermal simulation then it will quickly prove to
unstable[ This is the stability concept which is implicit in
our work[ It is based ultimately on the physical phenom!
enon of capillarity\ and hence can be referred to as capil!
lary stability[ As mentioned above\ Schubert and Straus
ð0Ł employ another concept\ that of gravitational stab!
ility\ in discussing their models[ This refers to the stability

of the one!dimensional system when subject to per!
turbations in two or three dimensions[ They develop stab!
ility criteria based on permeability for their models[
Capillary stability\ on the other hand\ can be formulated
in a purely one!dimensional context\ and is independent
of permeability[ We shall not consider gravitational stab!
ility further in this paper[

Plan of this paper[ In the _rst section we summarize
the geothermal equations used in this paper[ In the next
section we introduce the ~owplane diagram following the
presentation given in ð4Ł\ and then explain the practical
details of its construction and interpretation[ This is fol!
lowed by two sections which give the details of the dia!
gram in the two cases already mentioned[

Conventions used in this paper[ Depth "z# is positive
vertically downwards[ In the diagrams pressure is
measured in bars "0 bar � 094 Pa# and permeability is
measured in millidarcies "0 millidarcy � 0 md � 09−2

darcy � 09−04 m1#[ We use the term saturation to mean
liquid saturation when not otherwise speci_ed\ and often
use saturation as a synonym for liquid relative
permeability[

1[ The geothermal equations

The geothermal equations are well!known in the litera!
ture\ see for example ð6Ł[ They are derived from the stan!
dard conservation equations for mass and energy ~ow

1M
1t

¦9 = JM � 9 �
1E
1t

¦9 = JE[ "1#

The mass and energy densities M\ E are given as functions
of the primary dependent variables which are usually
taken to be pressure P and temperature T in single!phase
conditions\ while in two!phase conditions it is convenient
to take pressure P and liquid saturation S as the principal
variables[ In the case of one dimension\ and in the steady!
state\ the conservation equations reduce to the require!
ment that the ~uxes of mass and energy are spatially
constant ]

JM � const\ JE � const[ "2#

In single!phase conditions these ~uxes are

JM � Ja\ JE � haJa−K
dT
dz

"3#

where Ja\ a � w\ s is the mass ~ow of liquid "w# or vapour
"s#\ h is the enthalpy of the relevant phase\ and K is
the conductivity[ The Darcy ~ows Ja in one dimension
"vertical# are

Ja � −
k
na 0

dP
dz

−ra`1 "4#

where k is the absolute permeability "a function of depth#\
` is the acceleration due to gravity "z!axis positive down!
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Fig[ 0[ The ~owplane with coordinates "w\ s#\ see equation "8# de_ned as the union of all the saturation lines "00#[ In ðiŁ the solid lines
_ll out the region Q2 k D\ where Q2 is the third quadrant\ and D is the part of the fourth quadrant de_ned by the saturation line
envelope G which is tangent to the axes at the {wet point| W"0\ 9# and {dry point| S"9\ −0#\ respectively[ Similarly the dotted lines pick
out the region Q0 k D where Q0 is the _rst quadrant of the ~owplane[ The boundary segments are B−

w ] "s � 9 ^ −� ³ w ³ 0#\ B¦
w ]

"s � 9 ^ 0 ³ w ³ �\ B−
s ] "w � 9 ^ −� ³ s ³ −0# and B¦

s ] "w � 9 ^−0 ³ s ³ �#[ In ðiiŁ we show the lower sheet C− � Q2 k D− of the
~owplane\ origin O[ The boundary of C− is the union of the liquid boundary Bw "s � 9 ^−� ³ w ³ 0#\ the vapour boundary Bs

"w � 9 ^−� ³ s ³ −0#\ and G[ The saturation at the ~owpoint X"w\ s# is determined graphically by drawing the right tangent through
X to G ^ the intercepts of the tangent on the axes give the relative permeabilities kw\ −ks[
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wards#\ and ra\ na are the density and kinematic viscosity
of the relevant phase[

In two!phase conditions there are separate liquid and
vapour ~uxes so that

JM � Jw¦Js "5a#

JE � hwJw¦hsJs−K
dTsat

dz
"5b#

where Tsat"P# is the saturation temperature\ and the
Darcy ~ows Ja\ a � w\ s\ are similar to "4# except for the
introduction of relative permeability factors ka"S#

Ja � −
kka

na 0
dP
dz

−ra`1 [ "6#

A useful relationship between pressure and saturation
may be obtained by eliminating the pressure gradient
between equations "5# and "6#[ It may be written in the
form

s"P#
ks"S#

−
w"P#
kw"S#

� −0¦i"P#
0−kw−ks

kwks

[ "7#

In "7# the dimensionless coe.cient functions w\ s\ i are
functions of pressure "P#\ and also of the mass and energy
~ows "JE\ JM#\ permeability "k# and conductivity "K#

w �
−nw

`DhDr $0
JE

k 1−hs 0
JM

k 1¦rs` 0
K
k1

dTsat

dP %¦i "8a#

s �
ns

`DhDr $0
JE

k 1−hw 0
JM

k 1¦rw` 0
K
k1

dTsat

dP %−i "8b#

i �
nwns

`DhDr 0
JM

k 1 0
K
k1

dTsat

dP
"8c#

where Dh � hs−hw\ Dr � rw−rs[ Note that the second
term on the right of equation "7# is zero when either "a#
conductivity K is zero ^ or "b# net mass ~ow JM is zero "a
heatpipe# ^ or "c# the normalization "0# applies[ For future
reference note also that when either "a# or "b# holds the
ratio w:s is independent of permeability[

Field equations for the primary variables may be
derived from the conservation equations "1#[ The pres!
sure equation is parabolic in character\ and in single!
phase conditions so is the temperature equation
"assuming some conduction#[ However in two!phase con!
ditions "and excluding capillarity# the saturation equa!
tion is hyperbolic

1S
1t

¦C =9S � d−b = 9k "09#

where the saturation wavespeed vector C has the func!
tional form C � C"9P\ P\ S\ k# and the forcing function
d depends on these variables\ and on Pt as well[ The
second term on the right is a source term resulting from
the permeability heterogeneity\ and the coe.cient b has
the functional form b � b"S\ P\ k#[ We shall not require
speci_c expressions for C\ d and b in this paper "see ð00Ł
and ð01Ł#[

2[ The ~owplane diagram

In some recent papers Young ð01\ 4Ł has employed
~owplane coordinates w\ s to represent the geothermal
two!phase state[ These coordinates are linearly related to
the mass and energy ~ows through the de_ning equations
"8#[ Assuming the normalization "0#\ equation "7# implies
that a given saturation S � const is represented by a
straight line in the ~owplane

w
x

−
s

0−x
� 0 "00#

where x 0 kw"S# � 0−ks[ As x varies from 9Ð0 the satu!
ration lines _ll out a certain region in the ~owplane and
thus de_ne the complete set of possible two!phase states
as indicated in Fig[ 0"i#[ The curve G in this _gure is the
envelope of the saturation lines "00#[ A simple calculation
shows that G is a parabolic arc

zw¦z−s � 0 "01#

which touches the w!axis at the {wet point| W"0\ 9# and
the s!axis at the {dry point| S"9\−0#[ The two!phase
region of the ~owplane is then manifestly
C � Q0 k Q2 k D where Q0\ Q2 are the _rst and third
~owplane quadrants\ and D is the part of the fourth
quadrant Q3 bounded by the ~owplane axis and G[

Alternatively we may write "00# as a quadratic in x

x1−x"0¦w¦s#¦w � 9[ "02#

Then given a point X"w\ s# in the ~owplane\ the associ!
ated saturation "or\ more precisely the relative per!
meability# is determined by drawing the tangent to G
through X as shown in Fig[ 0"ii# ð4Ł[ The intercept of this
line on the w!axis is the value of kw\ the intercept on the
s!axis is −ks[ If X lies in D then there are two such
tangents corresponding to the two roots of the quadratic
"02#[ We use the notation D−"D¦# to indicate that the
right "left# tangent should be chosen to specify the satu!
ration branch[

It may be established ð01Ł that the saturation waves!
peed C is zero along G\ and that C ¾ 9 everywhere on
the negative sheet C− 0 Q2 k D− of the ~owplane[ The
corresponding positive sheet C¦ 0 Q0 k D¦ has C − 9
everywhere[ The positive "C¦# and negative "C−# sheets
are joined along G[ It is shown in ð4Ł that states for which
C × 9 are unstable relative to BH!BC whereas those for
which C ³ 9 are stable[ Thus\ C¦ is the unstable sheet of
the ~owplane and C− is the stable sheet "relative to BH!
BC#\ and G � C¦ K C− is the stability boundary[ Conse!
quently the two!phase states considered in this paper are
restricted to lie on the negative sheet of the ~owplane C−[

Figure 0 is a universal diagram\ that is\ the construction
is expressed solely in terms of the ~owplane coordinates\
and is valid for all relative permeability functions satisfy!
ing "0#[ This is the primary reason for introducing the
complicated transformation "8#[
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The ~owplane coordinates depend linearly on the mass
and energy ~ows and on conductivity\ but they are also
non!linear functions of permeability and pressure
"through the thermodynamic functions#[ Thus the ~ow!
plane diagram can be used in various ways\ for example
"a# to represent the totality of ~owstates JE\ JM " for
constant k\ K\ P# see ð01Ł ^ "b# to represent a parametrized
set of pressure trajectories w"P#\ s"P# for each k but
constant "JM\ JE\ K# ^ or\ "c# to represent a parametrized
set of pressure contours w"k#\ s"k# for each P but constant
"JM\ JE\ K#[ The representations "b# and "c# are used in
this paper and are particularly suitable for characterizing
the natural state of a given geothermal _eld which can be
idealized as a one!dimensional up~ow with known JE\
JM\ but with vertically varying permeability and pressure[

For such a _eld the permeability and pressure dis!
tribution with depth are probably not available\
especially in the unexploited state[ If the up~ow contains
a two!phase region the ~owplane method can be used to
examine the totality of permeability and pressure dis!
tributions which are compatible with the given mass and
energy ~ows[ While this might seem like an impossibly
vague task\ in fact in many situations there are severe
constraints on the character of the ~ows[

2[0[ Pressure trajectories and contours in the ~owplane ] a
method

We will now explain the methodology for constructing
and interpreting the ~owplane diagram[ We proceed by
developing a series of representative examples[ The rep!
resentative Fig[ 1 shows solid!line pressure trajectories
"labelled by permeabilities measured in millidarcies# and
dotted!line pressure contours "labelled by pressures
measured in bars#[ This _gure and those that follow have
been constructed from the parametric representation "8#
with JM\ JE and K held constant[ Fig[ 1"i# illustrates a non!
conductive heatpipe\ Fig[ 1"ii# illustrates a conductive
heatpipe\ and Fig[ 3 covers the case of non!zero net mass
~ux "but no conduction#[

As already mentioned the natural state of the geo!
thermal reservoir "insofar as it can be approximated as a
one!dimensional steady!state ~ow# is represented as a
path in the ~owplane diagram[ We refer to this path as a
state trajectory[ When the permeability is constant k9 then
the state trajectory becomes a segment of the pressure
trajectory k � k9\ for example the path "ab# in Fig[ 1"i#
lies along the pressure trajectory k � 9[2 md[ If there is a
slow variation in permeability then the state trajectory
will be a curve which lies close to a pressure trajectory[
Conversely\ if there is a rapid permeability change then
the state trajectory lies close to a pressure contour P � P9\
for example\ a permeability jump from 9[2Ð9[4 md at a
pressure of P9 � 099 bars is represented by the path "bc#
in Fig[ 1"i#[ The continuation "cd# represents a further
pressure increase at constant permeability "9[4 md#[ The

entire path "abcd# is a state trajectory for the two!phase
part of a reservoir containing a single permeability dis!
continuity[

The saturation "or rather\ the relative permeability# at
a ~owpoint X"w\ s# is determined\ as explained above\ by
drawing the tangent from the point to G[ If the ~owpoint
is in the counter~ow region D "where there are two tan!
gents to G# then the tangent on the right must be selected[
This ensures that the correct sheet of the ~owplane
C− ] C ³ 9 is being used[ Variations in saturation along
a state trajectory can be easily tracked by this graphical
method[

Note that in this study the representation "8# has val!
idity only on the sheet C− of the ~owplane where the
saturation wavespeed is negative "points upwards#[ It is
sometimes convenient to analytically extend the pressure
trajectories and permeability contours across the bound!
aries of this region\ however it should be remembered that
the ~owpoints outside C− have no physical signi_cance
"except possible as single!phase transition states\ see
below#[ The boundary of C− is conveniently divided into
three parts "see Fig[ 0# ] "a# the liquid boundary
Bw 0 B−

w which is the section "−� ³w ³ 0# of the w!
axis ^ "b# the vapour boundary Bs 0 B−

s which is the
section "−� ³ s ³ −0# of the s!axis ^ and "c# the stab!
ility boundary G along which C � 9[

2[1[ Phase transitions

The geothermal reservoir models discussed in this
paper are required to be {physically realistic|\ that is\ they
must be capable of representing the reservoir between the
geothermal source and the surface of the earth[ Such
a model will usually contain one or more single!phase
sections bounding the two!phase zone[ Young ð4Ł has
summarized the selection rules governing phase tran!
sitions\ and Table 0 from this paper is repeated here for
convenience[

The table characterizes the various phase transitions
which can occur in one!dimensional hydrothermal ~ows
in terms of saturation changes and the sign of the satu!
ration wavespeed[ The symbols are "T# � two!phase\
"S# � single!phase vapour\ "W# � single!phase liquid\
and "TW# means a transition from "T# above to "W#
below\ etc[ The transitional states are restricted to the
parts of the ~owplane speci_ed in column 4[ For each
transition there are two possibilities depending on the
sign of the wavespeed[ Typically\ one involves a jump in
saturation "a saturation boundary shock#\ and the other
is a smooth transition where the relative permeability
x 0 kw tends smoothly to its boundary value "9 or 0#[
Since the BH!BC used in this paper imply C ¾ 9 "pointing
upwards# we see from the Table 0 that if single!phase
~uid lies over two!phase ~uid "ST# or "WT#\ then there
must be a jump transition from the single!phase relative
permeability "9 or 0# to some two!phase value which we
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Fig[ 1[ Flowplane diagram for a geothermal heatpipe[ "i# No conduction[ The pressure trajectories "solid lines labelled by permeabilities
in millidarcies# and contours "dotted lines labelled by pressures in bars# are con_ned to the fourth quadrant of the ~owplane[ "ii# With
conduction[ The pressure trajectories "solid lines labelled by permeabilities in md# have a {conductive leg| intersecting the w!axis[

have denoted by x−[ Conversely\ if two!phase ~uid lies
over single!phase ~uid "TS# or "TW# then there can only
be a smooth transition from the appropriate residual
saturation to single!phase conditions[

In the ~owplane a BH!BC jump transition is rep!
resented by a point in the interior of C−[ It is the starting
point for the two!phase state trajectory[ A smooth tran!
sition is represented by a point on the boundary of C− ]
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Fig[ 2[ The geothermal heatpipe[ "i# PressureÐsaturation diagram[ The oval _gure formed from the solid and dotted lines is the analytic
expression obtained from equations "8# and "00#[ The section at the left is the low pressure conductive leg[ The bullet points are the
GTH simulation results for this example[ The dashed line is constructed from the TOUGH1 simulation[ "ii# Saturation!depth pro_le
for a 0199 m vertical heatpipe "gravity acts to the right# containing two permeability discontinuities denoted by the vertical dotted
lines[ The permeabilities are given in millidarcies "large bold numbers#[ Values of mass ~ux JM\ energy ~ux JE\ and conductivity K are
shown in the _gure[ The dashed horizontal lines are the residual saturations[ Numbers near the bottom of the diagram are the pressures
"in bars# at the indicated depths[
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Fig[ 3[ Flowplane diagrams "i\ ii\ iii# for three examples of non!conductive steady!state ~ow[ The pressure trajectories are shown as
solid lines and are labelled with permeabilities in millidarcies[ The radial dotted lines are pressure contours labelled by pressures in
bars[ Note that some contours have two labels corresponding to the two points of intersection with the pressure trajectory "see diagram
"ii##[ The fourth diagram "iv# shows vapour and liquid enthalpies in saturated conditions[ The four cases in equation "12# are shown
"dotted lines#[

on Bs for "TS# or on Bw for "TW#[ It is the end point for
two!phase state trajectory\ see for example the pressure
trajectories in Figs 3ði\ iiŁ[

2[2[ Terminal state of pressure trajectories which cross G

Not all BH!BC state trajectories terminate with a
smooth phase transition ] Fig[ 1"i# shows that all non!
conductive heatpipe pressure trajectories intersect the
stability boundary G[ At the point of intersection they
possess a de_nite saturation SG and pressure PG[ The
same is true for conductive heatpipe\ Fig[ 1"ii#[ If there is
a net mass through~ow then only some of the trajectories
need intersect G "Fig[ 3#[

The question arises as to the terminal state of such

trajectories when they are extended as far as\ and then
beyond\ G[ Consider the alternatives[

"a# The only possible smooth continuation of the tra!
jectory on C− ] C ³ 9 "wavespeed directed upwards#
after it intersects G is onto the positive sheet of the
~owplane C¦ ] C × 9 "wavespeed directed down!
wards#[ We show in Appendix A that such a con!
tinuation is not possible in the steady!state\ and in
any case this branch is unstable for the imposed BH!
BC[

"b# Secondly\ there is the possibility of a jump transition
to single!phase conditions[ In general a phase tran!
sition of this type\ "TW# or "TS#\ is not consistent
with the assumed BH!BC\ see Table 0[ However in
the special case when C � 9 Table 0 shows that the
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Table 0
Permissible phase transitions "selection rules# for hydrothermal ~ows

Phase Thermodynamic Wave speed Flow plane Saturation
transitions Type inequality constraint region change

TW Jump s − 9 C − 9 Q0 x¦Ł 0
TS Jump w − 9 C − 9 C¦ x¦Ł 9
WT Jump s ¾ 9 C ¾ 9 C− 0Ł x−

ST Jump w ¾ 9 C ¾ 9 Q2 9Ł x−

TW Smooth s � 9 C ¾ 9 B−
w 0Ł 0 VR

TS Smooth w � 9 C ¾ 9 B−
s 9Ł 9 LR

WT Smooth s � 9 C − 9 B¦
w 0Ł 0 VR

ST Smooth w � 9 C − 9 B¦
s 9Ł 9 LR

TT Jump w × 9\ C × 9\ D x¦Ł x−

x ³ 9 C ³ 9

Notation ] VR\ vapour residual ^ LR\ liquid residual ^ values x2 are the conjugate saturations "roots of "02##[

jump transition "TS# is formally possible "whereas
"TW#*in Q0*is not#[

"c# A third possibility is that a trajectory which includes
a point of the neutral stability boundary G may not
be stable to small perturbations[ According to this
point of view the jump transition "TS# would not be
observed for BH!BC "and steady one!dimensional
~ow in a homogeneous porous medium#\ because it
would be unstable[

In summary\ a steady!state trajectory which intersects
the stability boundary is either unstable\ or it must ter!
minate in single!phase vapour[ The present analysis does
not distinguish between these possibilities[

2[3[ Permeability discontinuities

In the case of a jump in permeability initiated in the
two!phase region\ it must be possible to connect the cur!
rent state k0 to the new state k1 by a pressure contour[
For a rapid but continuous change in permeability we
can imagine that each contour is {thickened| to a capillary
boundary layer within which the {inner solution| of the
capillary ~ow equations dominates ð8Ł[ There are then
three possibilities ] "a# the new state is two!phase\ in this
case we have a permeability!induced saturation jump
between two two!phase states ^ "b# the new state is single!
phase\ either vapour or liquid ^ or "c# the new state is
unstable[

To distinguish between the various possibilities\ we
_rst observe that at a phase boundary\ the neighbouring
single!phase state has a valid representation as a point
"w\ s# in the ~owplane since pressure and temperature
still lie on the ClausiusÐClapeyron curve[ When the per!
meability is continuous at a phase boundary\ Table 0
implies that the single!phase boundary state must lie

either "a# in the interior of C−\ which corresponds to a
jump transition of type "WT# or "ST#\ respectively ^ or
"b# on the boundary component Bs k Bw of C− which
corresponds to a smooth transition of type "TS# or "TW# ^
or "c# on the boundary component G of C−[ If\ on the
other hand\ there is a permeability discontinuity then the
single!phase boundary state will still be represented by a
point in the ~owplane\ but which may lie outside C−[
The selection rules in Table 0 then require some re!
interpretation[ We shall explain how to do this in sub!
sequent sections[

3[ The geothermal heatpipe

We begin by considering some special classes of diag!
ram\ namely those which describe zero net mass ~ow
"with and without conduction#[ These diagrams are rela!
tively simple ^ in addition these particular physical mech!
anisms "conduction\ counter~ow# have a recognizable
geometric signature which can subsequently be identi_ed
in the more complicated general class[

The case of zero net mass ~ow is commonly referred
to as a {heatpipe| in the literature\ or sometimes as {coun!
ter~ow| "we prefer to reserve the latter term for the more
general case when liquid and vapour ~ows are in opposite
directions\ but not necessarily of equal magnitude#[ It is
not particularly realistic from the geothermal point of
view\ although some authors have argued that it provides
a satisfactory approximation when the net mass ~ux is
small ] White et al[ ð02Ł have postulated a heatpipe model
for part of the Geysers steam _eld\ and McGuinness ð03Ł
has suggested that Larderello in Italy\ Matsukawa in
Japan and Kawah Kamojang in Indonesia could all be
modelled as heatpipes[
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McGuinness ð8Ł carries a good summary of recent
work[ Points at issue are ]

"0# Is a heatpipe necessarily vapour!dominated<
liquid!dominated< or can it be either< Much of the argu!
ment is related to the fact that there can be two solutions
for a given steady!state heat ~ow\ one vapour!dominated
and one liquid!dominated ð8Ł[ Satik et al[ ð04Ł analyse the
steady!state equations including capillarity\ and suggest
that only the vapour!dominated solution is obtained in
practice[ However many experimental results ð05Ð07Ł
suggest the contrary[

"1# What is the in~uence of applied boundary con!
ditions "top cooling or bottom heating#< McGuinness ð8Ł
develops a perturbation expansion of the steady!state
capillarity equations\ and argues that it is the choice of
boundary conditions which determines whether the ~ow
is liquid!dominated or vapour!dominated[ In particular\
when the system is bottom!heated then the heatpipe will
be liquid!dominated\ when it is top!cooled the heatpipe
will be vapour!dominated[ If the {wrong| solution is selec!
ted for the applied boundary conditions in a simulation
experiment then the system will quickly become unstable
when subject to small perturbations ð09\ 01Ł[ Young ð4Ł
does not include capillarity in the geothermal equations\
but uses arguments based on the entropy inequality ð08Ł
to arrive at much the same conclusions as McGuinness[
However Stubos et al[ ð3Ł claim that both vapour! and
liquid!dominated solutions are stable\ and the solution
selection is determined by the past behaviour of the
system[

"2# What is the maximum length of a heatpipe< Can it
be in_nite< Stubos et al[ ð3Ł repeat the claim of Udell ð07Ł
that a homogeneous heatpipe is of inde_nite length unless
the heat~ow exceeds a certain critical value ðequation
"03# belowŁ\ in which case the length is _nite[ McGuinness
ð8Ł argues that it has always a speci_c _nite length[ Bau
and Torrance ð06Ł reported the appearance of oscillatory
instability in their heatpipe laboratory experiments when
the length of the two!phase column exceeded a certain
fraction of the bed height[

"3# Under what conditions can a multi!layer heatpipe
containing phase boundaries evolve< Schubert and Straus
ð19Ł postulate a two!layer heatpipe in which a vapour!
dominated two!phase layer lies over a quiescent liquid
layer[ McGuinness ð8Ł and Young ð4Ł are both of the
opinion that such a heatpipe would be stable only for
TC!BC "top!cooled boundary conditions# which would
generally not be appropriate in a geothermal context\
however Satik et al[ ð04Ł claim that Schubert and Straus|
model would be observed for BH!BC[ Young ð4Ł presents
a general treatment of the stability properties of phase
boundaries in the steady state\ see Table 0[ Stubos et
al[ ð3Ł give a theoretical description based on capillarity
concepts of a bottom!heated liquid!dominated heatpipe
model surmounted with a quiescent liquid layer[

"4# E}ect of a permeability discontinuity< Stubos et

al[ state that the model just cited can only terminate "in
single!phase vapour at depth# if there is a rapid per!
meability increase with depth[ This is consistent with their
contention "mentioned in the Introduction to this paper#
that a permeability increase "downwards# in liquid!domi!
nated conditions acts to decrease the liquid saturation[

In the following we will argue for a particular res!
olution of all these con~icting points!of!view and we will
explain how the divergence in opinion has arisen[

3[0[ Zero net mass ~ow ] no conduction

Figure 1"i# shows the pressure trajectories "solid lines#
and contours "dotted lines# for the case of zero net mass!
~ow "JM � Jw¦Js � 9# and zero conduction[

In the heatpipe with zero conduction the energy ~ux
can be written JE �"Dh#Js and since Js ³ 9 "vapour
travels upwards in a steady!state heatpipe# it follows
from equation "8# that the ~ow states are con_ned to the
quadrant Q3 of the ~owplane\ or\ more precisely\ to the
counter~ow region D W Q3[ Note that for a non!trivial
heatpipe the pressure trajectories may not intersect either
axis\ since in that case equation "8# implies JE � 9[ A
further point is that the zero conduction heatpipe can
under no circumstances include a single!phase leg\
because in such a region there is no mass ~ow\ and hence
no energy ~ow either[

The character of the pressure trajectories and contours
may be deduced from equation "8#\ or read directly from
Fig[ 1"i#[ In the present case the pressure contours are all
straight lines emanating from the ~owplane origin "as
k : �#[ Note that the pressure trajectories must all inter!
sect G for some boundary pressure PG less than the critical
value\ since if P � Pc then Dh � 9 �Dr\ which here
implies w � �\ s � −�[ PG is computed from the
expression

v 0
−JEns

k`DhDr
�

ns

"znw¦zns#1
0 vcrit "03#

which is obtained by combining equations "8# and "01#
"with JM � 9 �K#[ The quantity v is termed the dimen!
sionless heat ~ux\ while the right!hand side of equation
"03# is commonly referred to as the maximum\ or critical\
or dry!out heat ~ux ð06\ 07\ 3Ł[ For two!phase conditions
to hold the ~ow point must lie inside D\ that is

v ¾ vcrit[ "04#

In laboratory experiments both v and vcrit are usually
approximated by constants[ It is then often claimed that
dry!out to single!phase vapour conditions must occur if
the heat through~ow is such that v × vcrit[ However in
the case of a geothermal heatpipe the pressure depen!
dence of both v and vcrit must be retained[ Then in our
interpretation the dimensionless heat ~ux reaches its dry!
out value in every geothermal heatpipe "if su.ciently
extended#[ As shown above a state trajectory cannot be
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prolonged beyond this stability boundary ] it either
becomes unstable or there is a jump transition to single!
phase vapour[ Since a purely convective heatpipe cannot
be connected to a single!phase region\ it must therefore
become unstable when extended[ This conclusion is in
contrast to the view of Udell ð07Ł and Stubos et al[ ð3Ł\
that a homogeneous bottom!heated heatpipe "with small
enough heat ~ow# may be extended downwards {inde_!
nitely|[

In fact Fig[ 1"i# shows there may be two pressures
which satisfy "03#\ and PG is the greater of the two[ As
−JE:k increases the two pressures approach one another\
and eventually become identical\ when vJE"P#:1P � 9[
At this point the "analytic continuation of the# pressure
trajectory lies entirely below G in the region DÞ � Q3:D
and just touches G at the double root[ For given per!
meability k this condition de_nes a maximum heat ~ux
−JE"max#"k# beyond which no heatpipe is possible\ con!
versely for given JE it de_nes a minimum permeability
kmin"JE# such that no heatpipe is possible for k ³ kmin[
Figure 1"i# also shows that for large permeabilities the
BH!BC heatpipe is liquid!dominated over most of its
length[ However vapour!dominated conditions can be
encountered at the top and bottom of the pipe[

Permeability hetero`eneity[ If the column contains a
permeability contrast then we see from Fig[ 1"i# that for
Dk positive " for example\ from "b#Ð"c# along the P � 099
bar pressure contour# the liquid saturation must increase[
This is in the opposite sense to what might be expected
from a capillary driven phenomenon[ To understand
what is involved here we refer to the saturation equation
operating in the capillary layer\ as given by Stubos et al[
ð3Ł[

0−
J?
t 1

1S
1j

¦
J

t1

1t

1j
� 0−0

w
kw

−
s
ks1[ "05#

Here t is a dimensionless permeability\ j is a dimen!
sionless depth coordinate "positive downwards# and J is
Leverett|s J!function[ The coe.cients w\ s are identical
with the ~ow coordinates "8# " for this case JM � 9 �K#[
Let us follow what happens when the dimensionless per!
meability increases through a strong gradient from an
initial value of t � 0 to a _nal value t � t0 × 0[ Initially
"outside the heterogeneity# the RHS of equation "05# is
zero ðsee "00#Ł[ If the permeability increases this term
becomes positive until equilibrium is re!established[ Thus
inside the layer the saturation gradient is governed by a
balance between a positive gravitational contribution
"the RHS# and the negative capillary term coupled to the
permeability gradient "second term on the left#[ Initially
"just inside the layer# it may often be the case that capil!
larity dominates and S decreases "the derivative
J? � 1J:1S of Leverett|s J!function is negative#[ However
eventually the in~uence of the permeability gradient term
will be balanced by the gravitational term and the satu!
ration within the layer will begin to increase[ Finally

equilibrium is re!established\ the LHS of "05# is again
zero\ and "00# now holds for the new permeability
"t � t0# and the corresponding saturation which can be
obtained from this equation "with P constant#[ The net
result " for BH!BC# is a saturation increase as shown
by the simulation example Fig[ 3[ The initial saturation
decrease "if it occurs# is hidden within the capillary layer[
This is true even in the case of strong permeability gradi!
ents as considered by Satik et al[ Although a local capil!
lary!driven saturation response to a permeability gradi!
ent "permeability increase downwardsc liquid
saturation decrease# may be observed in laboratory situ!
ations\ in a geothermal heatpipe only the macroscopic
gravitational response "permeability increase down!
wardsc liquid saturation increase# is likely to be noticed[

Let us now apply these ideas to the hypothesis put
forward by Straus and Schubert ð1Ł\ that a permeability
contrast is required to explain the existence of vapour!
dominated conditions in the natural state of a geothermal
reservoir[ The obvious corresponding reservoir structure
is the boundary between the caprock and the geothermal
aquifer[ But\ according to the argument just presented\
this zone of rapidly increasing permeability "downwards#
will be associated with a liquid saturation increase\ not a
decrease[ Hence this mechanism as it stands cannot
account for the existence of vapour!dominated geo!
thermal reservoirs[

3[1[ Zero net mass ~ow with conduction

In this case the ~ow coordinate de_nition "8# simpli_es
to

w �
−nw

k`DhDr
ðJE¦rs`gŁ "06a#

s �
ns

k`DhDr
ðJE¦rw`gŁ "06b#

where g � KTłsat[ From equation "06# the ~ow point
X"w\ s# is formally located as follows

X in second quadrant Q1c−JE ³ rs`g "07a#

X in first quadrant Q0c rs`g ³ −JE ³ rw`g "07b#

X in fourth quadrant Q3c−JE × rw`g[ "07c#

Only "07c# is physically acceptable for BH!BC[ Thus\ the
state trajectory is again con_ned to D and the pressures
must satisfy the inequality "07c#[ If JE has too small a
magnitude then there is no BH!BC solution "no negative
wavespeed two!phase state# ] we must have a {high
energy| state satisfying −JE × rc`gc\ or −JE:K × 9[9004
K m−0 "see Appendix# ^ if JE is {low energy| −JE ³ rc`gc

then only positive wavespeed states are possible[ Equa!
tion "07# also shows that if JE is high energy then the
trajectory will always cross the positive w!axis\ but does
not intersect the s!axis[ The intersection is con_ned to
the physical range 9³ w ³ 0 provided k × kmin where
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kmin"JE\ K# labels the trajectory passing through the wet
point W"0\ 9#[ This minimum permeability value is deter!
mined from equation "06# as

kmin:K � nwT� sat:Dh "08#

where the right hand side is evaluated at the pressure
P9"JE:K# which satis_es −JE � rw`Tłsat[ For the par!
ameter values used in Fig[ 1"ii# we _nd P9 � 2[0268 bars\
and kmin:K � 0[002×09−06 m2 K W−0[

Figure 1"ii# shows the pressure trajectories for an
example of zero net mass ~ow with conduction[ Pressure
contours are again straight lines\ but this time can be
double!valued "two pressures labelling the same line#[
Comparing with Fig[ 1"i# we see that conduction only
a}ects the low pressure end of the trajectory\ adding an
additional leg to the pressure locus[ The intersection with
G is de_ned by an expression similar to equation "03#\
and this time there can be up to three pressure values
which satisfy it[ When k � 9[2 md the conductive part of
the heatpipe is separated from the convective part by G[
For k � 9[1 md the convective leg has disappeared
entirely "below G# as in the non!conductive case but the
conductive leg remains[ Further decrease in permeability
will move the vertical conductive segment to the right
until it intersects the w!axis at w � 0[ At this point the
permeability must have the value kmin given in equation
"08#[ Permeabilities less than this cannot be present in a
steady!state conductive heatpipe[

Extended heatpipes[ The example shows that the e}ects
noted in the non!conductive heatpipe are present here as
well[ In particular\ a vertically extended heatpipe can
only leave the ~owplane by crossing G[ When conduction
is present a transition to single!phase vapour is possible
at this boundary[ Figure 2"i# shows a simulation example
illustrating this[ The bullet points are the GTH "Georgia
Tech Hydrothermal# simulation results obtained by
Wenyue Xu "School of Earth and Atmospheric Sciences\
Georgia Institute of Technology\ Atlanta\ GA ] private
communication# using 01 grid blocks each 099 m deep\
and two small 9[90 m boundary blocks with the upper
boundary held at P � 004 bars\ S � 9[5248 and JM � 9\
JE � −1 W m−1 at the lower boundary[ The simulation
data lies close to the C ³ 9 branch of the analytic curve\
and a stable transition "TS# is obtained near C � 9[

This numerical solution was checked with the
TOUGH1 simulator ð10Ł using a total of 004×09 m
gridblocks\ and a similar results was obtained[ The small
divergence in the numerical treatments can be attributed
to alternative choices of the thermodynamical functions[
Note that since C ³ 9 the upper saturation boundary
condition should be irrelevant[ This is shown to be the
case in the TOUGH1 simulation results\ where the
boundary saturation is held at S � 9[7\ but is present
only as a boundary discontinuity[

A further point is that the TOUGH1 curve is actually
a double line\ the two cases being identical except for the

respective presence or absence of capillarity "using the
Leverett J!function#[ Although physical capillarity is evi!
dently insigni_cant in the simulation\ numerical
upstreaming apparently assumes an equivalent role
especially near C � 9 where convective e}ects disappear
ð09Ł[ Upstreaming presumably accounts for the diver!
gence of the TOUGH1 numerical solution from the
theoretical curve in Fig[ 2"i#[

The zero point itself is only neutrally stable\ and pass!
age through it is a delicate matter[ Near C � 9 numerical
stability is highly dependent on the selection of the initial
conditions[ If these are chosen too far from the _nal
steady state then numerical instabilities appear[ These are
usually cyclical in nature with a typical period of 09 999
years[ The oscillations can be mild "temperature ~uc!
tuations of a few degrees at depth# or they may involve a
periodic phase change "two!phase:single!phase vapour#[

Multilayer sequences[ If conduction is present then the
two!phase part of the heatpipe may be surmounted by a
single!phase column of immobile ~uid[ Referring to
Table 0 we see that this must be liquid "WT# "the alter!
native "ST# is excluded since the trajectories must be
contained in D W Q3#[

Permeability hetero`eneity[ The conductive heatpipe
shows a similar behaviour to the non!conductive one with
respect to permeability contrasts[ In particular for BH!
BC a permeability increase "downwards# induces a cor!
responding increase in the liquid saturation[ However
with conduction there is the additional possibility that
the two!phase state may be terminated by a permeability
discontinuity[ From Fig[ 1"ii# we see that in this case the
single!phase boundary state must lie in DÞ � Q3:D where
w × 9[ Hence from Table 0 the transition must be "TS#[
Although such a trajectory crosses the stability boundary
G it does so within the capillary boundary layer with
which each pressure contour is surrounded[ The stability
argument no longer applies when capillarity is dominant[

In summary\ possible multilayer sequences for a con!
ductive geothermal "bottom!heated# heatpipe are as fol!
lows ]

"0# For a homogeneous medium ] stationary single!phase
liquidÐliquid!dominated two!phaseÐstability bound!
aryÐstationary single!phase vapour "W!TW!G!S# ^

"1# For a homogeneous medium ] stationary single!phase
liquidÐliquid!dominated two!phase : unstable when
extended "W!TW : U# ^

"2# In the presence of a negative permeability dis!
continuity "permeability decrease# ] stationary single!
phase liquidÐliquid!dominated two!phaseÐðdis!
continuityŁÐstationary single!phase vapour "W!TW!
ðDŁ!S#[

We illustrate these points with some results from a simu!
lation of one!dimensional ~ow[ Figure 2"ii# shows the
saturation pro_le for a heatpipe containing two per!
meability discontinuities[ In the _gure gravity acts to the
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right and the horizontal dotted lines are the residual
saturations[ There is zero net mass through~ow\ the
energy ~ow is JE � −1[9 W m−1 and conductivity is
K � 1 W m−0 K−0[ The upper surface boundary con!
dition is P9 � 094 Pa and T9 � 04>C[

Figure 2"ii# is based on numerical results using the
TOUGH1 geothermal simulator ð10Ł[ A vertical section
of depth 0199 m within a geothermal reservoir has been
approximated as a one!dimensional column[ Starting
from an initial single!phase state of constant pressure and
temperature the boundary conditions are applied at top
"P � P9\ T � T9# and bottom "JM\ JE#\ and the system is
run to steady!state[ In this case a phase boundary
appears\ separating an upper quiescent single!phase
liquid zone from an underlying two!phase region[ The
location of this interface is determined by the upper
boundary condition ð5Ł and the permeability dis!
tribution ^ note that it is generally not coincident with the
permeability discontinuity[ The saturation jump at the
interface consists of two parts ] a jump through the immo!
bile steam saturations which are always excluded in the
steady!state ð11Ł ^ and an additional jump to a saturation
for which both phases are mobile[ Piecewise linear rela!
tive permeability functions have been employed in the
simulation with Srw � 9[0 �Srs ^ but note that all the
results in this paper are independent of the choice of
relative permeability function satisfying the normality
condition "0#[ As a partical check on some results the
simulations have been run both with capillarity "using
Leverett|s J!function# and without[ The results are essen!
tially identical[ This con_rms that our formulation of the
steady!state problem represents the macroscopic e}ects
of capillarity correctly[

Below the phase boundary "in this example at about
08 bars# there is counter~ow within the heatpipe[ The
liquid saturation then increases until the _rst permeability
discontinuity "a permeability increase from 0Ð4 md# is
encountered at 484 m "about 49 bars#[ This induces a
step increase in liquid saturation[ After this there is a
further slow increase in saturation[ Thus far the pro_le
is qualitatively similar to the state trajectory "abcd#
shown in Fig[ 1"i# "although the leg "cd# as selected*for
reasons of clarity*actually involves a saturation
decrease#[

The second permeability discontinuity "a permeability
decrease from 4Ð9[0 md# occurs at 884 m "about 68 bars#[
Referring to Fig[ 1"ii# we see that the step decrease is
of su.cient magnitude to take the ~owstate across the
stability boundary G into the single!phase part of the
~owplane DÞ[ We have argued that this state must be
single!phase vapour\ and the simulated saturation pro_le
in Fig[ 2"ii# con_rms this[

Summary[ Let us summarize our results in terms of the
issues raised at the beginning of this section[ Implicit in
our argument is the idea that the steady!state boundary
conditions determine the sign of the saturation wave!

speed\ which implies the selection of a particular satu!
ration branch for the heatpipe[ For BH!BC the heatpipe
is always liquid!dominated[ Experimental evidence ð05Ð
07Ł supports this contention[ The vapour!dominated
heatpipe of Schubert and Straus ð19Ł is unstable unless
the boundary conditions are reversed\ that is\ pressure
and temperature are _xed at depth and heat is extracted
at a _xed rate from the surface[ The liquid!dominated
two!phase heatpipe can be connected to an overlying
quiescent single!phase liquid layer\ but if extended ver!
tically downwards it either loses stability\ or possibly
connects to single!phase vapour with a jump across the
stability boundary[ A negative permeability contrast
"permeability decreases downwards# induces a liquid
saturation decrease\ and if the discontinuity is of
su.cient magnitude then the heatpipe may terminate in
single!phase vapour[ Our evidence is presented in Figs
1"i# and "ii#\ and in the simulation example "Fig[ 2"ii##[
This is consistent with the rule for the termination of the
heatpipe just given[ The opposite e}ect noted by Stubos
et al[ ð3Ł "permeability decrease : saturation increase#
occurs only inside the capillary layer and has no in~uence
outside it[

Conversely\ a positive permeability contrast will induce
a saturation increase "wetter conditions#[ The statement
by Stubos et al[ ð3Ł\ that a bottom!heated heatpipe may
only terminate "in single!phase vapour# if there is a sub!
stantial increase in permeability "with increasing depth#
somewhere in the medium\ refers to a capillary!mediated
e}ect which can be deduced from equation "05#\ see
Stubos et al[ for details[ We have never observed this
e}ect in our simulations[ It seem likely that for capillary
dry!out the permeability increase must occur over a small
fraction of the capillary layer[ The other possibilities
detailed here for heatpipe termination\ namely ] ter!
mination in single!phase vapour in response to a per!
meability decrease\ or progression to single!phase vapour
through the stability boundary in a homogeneous
medium\ do not appear to have been explicitly noted by
Stubos et al[ ð3Ł[

Furthermore\ we do not believe that a heatpipe may
be {in_nitely long for low heat ~ux| ð07Ł[ On the contrary\
numerical simulations show that an extended heatpipe
often becomes unstable when continued past the stability
boundary G[ The oscillations reported by Bau and Torr!
ance ð06Ł may be experimental evidence of the instability[
We suspect that overlooked or unreported instabilities
may have occurred in other laboratory heatpipe exper!
iments[

The argument for an in_nitely long heatpipe appears
to result from ignoring the pressure dependence of the
thermodynamical quantities in the steady!state equations
ð8Ł[ This might seem justi_ed in a laboratory heatpipe
experiment where pressures are more or less constant\
but it leads to the wrong conclusions when extrapolated
to the scale of a geothermal heatpipe "several kilometres#[
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In our opinion there has been some confusion between
the inner and outer levels of the solution ð8Ł[ The constant
pressure assumption is essentially a boundary layer
approximation and leads to error if applied to portions
of the heatpipe outside the boundary layer[

4[ Non!zero net mass ~ow ] no conduction

Next we consider the case of non!zero net mass ~ow
when conduction is zero\ or can be ignored[ Again this is
not very realistic for a geothermal reservoir\ but it pro!
vides an interesting comparison with the general case
when conduction is not negligible[ The ~ow coordinate
transformations are now

w �
−nw

k`DhDr
ðJE−hsJMŁ �

nwJw

k`Dr
"19a#

s �
ns

k`DhDr
ðJE−hwJMŁ �

nsJs

k`Dr
"19b#

where Jw\ Js are the ~ows of liquid and vapour\ respec!
tively[ From "19# we derive the analogue of "07# for
the ~owpoint X"w\ s# in terms of h 0 JE:JM\ the ~owing
enthalpy "a constant# ]

X in fourth quadrant Q3c h × hs "10a#

X in third quadrant Q2c hw ³ h ³ hs "10b#

X in first quadrant Q0c hw ³ h ³ hs "10c#

X in second quadrant Q1c h ³ hw[ "10d#

For BH!BC only "10a# and "10b# are acceptable[ The
trajectories may cross either axis in the range −� ³w\
s ³ 9[ Intersection occurs when

hs"P# � h\w � 9\ s � nsJM:k`Dr "11a#

hw"P# � h\ s � 9\ w � nwJM:k`Dr[ "11b#

Further detail may be derived from the two!phase
enthalpy:pressure diagram Fig[ 3"iv# ] from this diagram
and equation "11# we deduce the following physical con!
_gurations

low 9 ³ h ³ hc 0 intersection on w!axis\ confined to Q2

"12a#

intermediate hc ³ h ³ hsM 0 or 1 intersections on s!axis

"12b#

high h × hsM confined to Q3 "12c#

where hsM is the maximum enthalpy of vapour in satu!
rated conditions and hc is the enthalpy at the critical
point[ The Appendix lists the numerical values of these
quantities[

Figures 3"i#Ð"iii#\ show some representative examples
of Cases "12a#Ð"12c# respectively[ It is not necessary to
comment on these diagrams in detail\ but we shall em!
phasize the following points ]

"0# The phase selection rules given Table 0 do not apply

to the zero conduction example\ but it is easy to see
that in this case the state trajectory can only ter!
minate in single!phase liquid[ However our main
interest is in the geometrical characteristics of the
~owplane trajectories[ Therefore we shall not con!
sider multi!layer models further in this section[

"1# In the low enthalpy class "12a# both phases ~ow
upwards and the trajectory is con_ned to Q2\ see Fig[
3"i#[ For high enthalpy "12c# the two!phase state is
con_ned to D as in Fig[ 3"iii#\ the vapour phase ~ows
up\ the liquid down "counter~ow#\ and the tra!
jectories are similar to those in Fig[ 1"i# "zero net
mass ~ow with zero conduction#[
If hc ³ h ³ hsM ðintermediate enthalpy\ class "12b#Ł
then the trajectories may be con_ned entirely to Q2

"concurrent ~ow#\ or they may contain an upper leg
where ~ow is concurrent\ and a lower leg where there
is counter~ow[ To distinguish between these possi!
bilities we level the trajectory which passes through
the dry point S"9\ −0# by kd then if k × kd at depth
the pressure trajectory will ultimately intersect G\ but
if k ³ kd then the trajectory will intersect the vapour
boundary Bs[ The drypoint permeability kd"JE\ JM# is
determined from equation "19# with w � 9\ s � 0\ that
is\

hs"P# � h\ k �
−nsJM

`Dr
"13#

which has a solution for hc ³ h³hsM "if h × hsM then
the trajectory is con_ned to Q3#[ Here the _rst equa!
tion determines the drypoint pressure P � Pd which
is then substituted into the second equation to _x
k � kd[ If there are two values of Pd then the greater
must be taken[

"2# The pressure contours are again straight lines
"s:w � const# emanating from the origin[ This has an
important consequence\ namely that a step increase
in permeability " for example\ from "a# to "b# in Fig[
3"i## is always associated with an increase in liquid
saturation[ Since a gradual increase can be con!
structed from small steps\ the general conclusion is
that a positive permeability contrast "permeability
increase with depth# acts to increase liquid content[
This is in agreement with the intuitive notion that a
permeability increase should produce a wetter
environment[

5[ Summary

In Part I of this paper we have given a general intro!
duction to the ~owplane method\ and shown how it may
be used to represent*as a state trajectory in the ~ow!
plane diagram*the steady!state of a one!dimensional
two!phase geothermal reservoir[ Pressure trajectories
de_ne the vertical pressure pro_le of a homogeneous
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reservoir\ pressure contours track the ~ow across a per!
meability discontinuity[ The ~owplane method ignores
the inner structure of the capillary boundary layers\ but\
when correctly interpreted\ it provides selection rules
which specify uniquely the "stable# state trajectory rela!
tive to the given boundary conditions[ In the case of
geothermal boundary conditions "BH!BC# the trajectory
is selected by the requirement that the saturation wave!
speed be negative "upwards!pointing#[

The classi_cation of geothermal ~ows using the ~ow!
plane method begins in Part I by considering the geo!
metrical character of the pressure trajectories and con!
tours of some simple examples[ In the case of a heatpipe
without conduction the state trajectories are con_ned to
the fourth quadrant of the ~owplane\ and may not inter!
sect the ~ow axes[ When conduction is added a charac!
teristic {conductive leg| is appended to the pressure tra!
jectories[ In the case of non!zero net mass ~ow\ but with
no conduction\ there is a natural division into high\ inter!
mediate\ and low enthalpy ~ows[ The pressure tra!
jectories belonging to the low enthalpy ~ows are all con!
_ned to the third quadrant of the ~owplane "concurrent
~ow#\ and exit through the liquid boundary segment Bw[
The high enthalpy ~ows are con_ned to the counter~ow
region D of Q3[ Intermediate ~ows have pressure tra!
jectories of two types ] for low permeabilities the tra!
jectories lie entirely in Q2 and exit the ~owplane through
the vapour boundary Bs ^ for high permeabilities they
begin with concurrent ~ow in Q2\ then cross into the
counter~ow region D\ and exit through the stability
boundary G[

We used the ~owplane diagram to determine the
character of the bottom!heated geothermal heatpipe\ and
compared our results with those of other authors[ In
particular\ we showed that the two!phase part of the
heatpipe could be surmounted with a quiescent liquid
layer\ and that oscillatory instability often sets in when
the heatpipe is extended vertically downwards[ Tran!
sition to single!phase vapour through the stability bound!
ary was possible provided the initial conditions were close
to the _nal state[ Both the unstable and stable heatpipes
could be used as idealized natural state reservoir models\
but note that vapour!dominated conditions are only
encountered*if at all*at considerable depth[ The heat!
pipe could also be terminated "in single!phase vapour# at
any depth by a negative permeability discontinuity "rapid
permeability decrease#[

The pressure contours in all the special cases con!
sidered in Part I were radial straight lines emanating from
the ~owplane origin "s:w � const#\ which implies that a
permeability increase "downwards# always acts to
increase the liquid saturation[ This is not in conformity
with the hypothesis that the positive permeability gradi!
ent between the caprock and the underlying geothermal
aquifer can act to induce vapour!dominated conditions
in the latter ð1\ 2Ł[ Thus some other factor must be sought

to account for the existence of vapour!dominated geo!
thermal reservoirs[ This will be described in Part II of
this paper[
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Appendix

Thermodynamic properties[ The thermodynamic
properties used in the computations are\ with one excep!
tion\ those listed in ð12Ł[ The exception is the kinematic
viscosity which is taken from ð13Ł[

Some useful saturated values are]

The minimum temperature two!phase state is given in
the steam tables as Tm � 9[90>C[ At this temperature
Pm � 5001 Pa\ and hwm 0 9[9\ hsm � 1[4905 MJ kg−0\
rsm � 3[74942×09−2 kg m−2\ rwm � 888[6654 kg m−2\
nwm � 0[6807×09−5 m1 s−0\ nsm � 0788[864×09−5 m1 s−0\
Tłsat"Pm# � 9[9114 Pa−0 K[

The maximum enthalpy of saturated steam is
hsM � 1[7912 MJ kg−0 at a temperature of about
T � 124>C "P � 29[521 bars#[

The critical point is at T � Tc � 263[04>C
"P � Pc � 110[19 bars#[ At the critical point the dis!
tinction between vapour and liquid disappears[ Thus\ at
this point we have hw � hs � hc � 1[0963 MJ kg−0\
nw � ns � nc � 9[0107×09−5 m1 s−0\ rw � rs � rc �
203[62 kg m−2[ Also we _nd that the saturation
temperature derivative at the critical point is
Tłsat"Pc# � 2[6099×09−5 Pa−0 K[

The behaviour of the saturated liquid and vapour
enthalpies over the temperature range Tm ³ T ³ Tc is
illustrated in Fig[ 3"iv#[

Flowplane boundary G[ Here we shall demonstrate that
a smooth transition from one ~owplane sheet to the other
is not possible in the steady!state[ We use the saturation
equation "09# specialized to the steady!state

C"S\ P\ Pz#
1S
1z

� d"S\ P\ Pz#[ "14#

We can use the relations JM � JM"S\ P\ Pz#\
JE � JE"S\ P\ Pz# to eliminate Pz from "14#\ and to express
P as a single!valued function of S\ JM and JE[ Near
G] C � 9 the functions C and d may be written
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C � −"S−SG#a0"JM\ JE#¦= = = and d � d9"JM\ JE#¦= = =
where SG is the value of S on G[ It may be shown that a0

and d9 are both positive[ Then "14# integrates to

"S−SG#1 � −
1d9

a0

"z−zG#¦= = = "15#

where zG is the value of z on G[ Equation "15# can only
be satis_ed for real S if z ¾ zG[ This remains true for both
the negative sheet C ³ 9\ S × SG and the positive sheet
C × 9\ S ³ SG[ Thus\ in no case can the trajectory be
extended "smoothly# through G] C � 9[
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